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This is an extended version of the Oberwolfach report
on a joint work with Guido De Philippis and Luca Spolaor.

Many of the statements and the proofs, especially the ones regarding the
one-phase problem, are intentionally oversimplified.

This talk is dedicated to the regularity of the free boundaries of the two-phase
Bernoulli problem in any dimension. We first present some tools and ideas for the
one-phase problem and then we discuss the two-phase case and our main result.

1. One-phase free boundaries

Let D ⊂ Rd be a fixed domain (for simplicity we suppose that D is the unit
ball B1), ϕ : ∂D → R be a nonnegative function and Λ > 0 be a given constant.
We consider the one-phase Bernoulli problem

Minimize

∫
D

|∇u|2 dx+ Λ|{u > 0} ∩D| among(1)

all functions u ∈ H1(D) such that u = ϕ on ∂D.

1.1. Example. In dimension one, if D is the interval [0, 1], and if, for instance,

φ(0) = a > 0 and φ(1) = 0,

then it is easy to check that the minimizer should have the form

u(t) =
a

`
(`− t) for 0 ≤ t ≤ ` , u(t) = 0 when t ≥ `.

Now, a straightforward computation gives that u is optimal, when ` = 1 or

|u′(`)| = a

`
=
√

Λ.

In particular, one can notice that when Λ is large the solution is not regular as
the gradient jumps from

√
Λ to 0 where the function vanishes.

1.2. Lipschitz continuity. The optimal regularity for u (in any dimension) was
obtained by Alt and Caffarelli. In [1] they showed that if u : D → R is a solution
of the one-phase problem (1), then it is (locally) Lipschitz continuous.1

1In the same paper Alt and Caffarelli prove a regularity result for the free boundary. We dis-
cuss a different strategy which was developed in several more recent papers by different authors.

More details can be found in [6].
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1.3. First variation and its consequences. Let ξ be a smooth vector field,
compactly supported in D. Then, for small t, we can test the optimality of u with
ut(x) := u(x− tξ(x)). Taking the derivative of the energy at t = 0, we get

0 =

∫
D

(
− 2∇uDξ (∇u)t + divξ |∇u|2 + Λdiv ξ

)
dx.

We notice if u and ∂{u > 0} are regular enough this is equivalent to

0 =

∫
∂{u>0}

(
− |∇u|2 + Λ

)
(ξ · ν) dHd−1,

where ν is the exterior normal to ∂{u > 0}. In particular, since this holds for an
arbitrary ξ, we obtain that the optimality condition

(2) |∇u| =
√

Λ on ∂{u > 0} ∩D,

should be satisfied (at least in some weak sense) also in dimension d ≥ 2.
Another crucial consequence of this first order optimality condition is the Weiss’

monotonicity formula [7], which is an important tool in the study of the blow-up
limits. It also allows to apply a Federer dimension reduction principle and to give
an the estimate of the dimension of the singular set.

1.4. Blow-up limits. The Lipschitz continuity of u implies that if x0 = 0 is a
point on the free boundary ∂{u > 0} ∩ D, then the family of functions ur(x) =
1
ru(rx) is (locally) uniformly Lipschitz. In particular, every sequence rn → 0 has
a subsequence (still denoted by rn) such that urn converges locally uniformly to
some u0 : Rd → R (which a priori depends on the sequence rn). Moreover:

• u0 is a non-zero function (this non-degeneracy lemma can be found in [1]);
• u0 is a local minimizer of the one-phase problem, that is,∫

BR

|∇u0|2 dx+ |BR ∩ {u0 > 0}| ≤
∫
BR

|∇v|2 dx+ |BR ∩ {v > 0}| ,

for every ball BR and every v ∈ H1(BR) with v = u0 on ∂BR.
• u0 is 1-homogeneous (as a consequence of the monotonicity formula).

We can use this information to give sense to the optimality condition (2).

1.5. Viscosity solutions. Let u be a solution to (1). Then u satisfies (2) in the
following (viscosity) sense. For every x0 ∈ ∂{u > 0} ∩D and ϕ ∈ C∞(D),

• if u(x0) = ϕ(x0) and u ≤ ϕ+ in D, then |∇ϕ(x0)| ≥
√

Λ;

• if u(x0) = ϕ(x0) and u ≥ ϕ+ in D, then |∇ϕ(x0)| ≤
√

Λ.

Let us prove the first point. Let x0 = 0 and rn → 0 be such that the sequence
urn converges to some blow-up limit u0. Since ϕ is regular, ϕrn(x) := 1

rn
ϕ(rnx)

converges to the linear function x 7→ x ·∇ϕ(0). Then u0(x) ≤
(
x ·∇ϕ(0)

)
+

. Using

that u0 is a non-zero 1-homogeneous function which is harmonic in its support
(which is contained in the half-space

{
x : x · ∇ϕ(0) > 0

}
), we get that

u0(x) = C
(
x · ∇ϕ(0)

)
+

for some constant 0 < C ≤ 1.
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Now, since u0 and ∂{u0 > 0} are regular, (2) holds for u0 in the classical sense.

Thus, C should be equal to |∇ϕ(0)|−1
√

Λ. This proves that |∇ϕ(0)| ≥
√

Λ. The
case when ϕ touches u from below is similar.

1.6. Regularity of the flat one-phase free boundaries. In [4] De Silva proved
the following theorem.
Theorem (De Silva [4]). There are ε0 > 0 and 0 < ρ < 1 such that if u is
Lipschitz continuous, harmonic in {u > 0}, satisfies (2) in viscosity sense and

√
Λ (xd − ε)+ ≤ u(x) ≤

√
Λ (xd + ε)+ for every x ∈ B1

for some ε < ε0, then there is a unit vector ν, ε-close to ed and such that

√
Λ (x · ν − ε/2)+ ≤

1

ρ
u(ρx) ≤

√
Λ (x · ν + ε/2)+ for every x ∈ B1.

As a consequence, a classical argument gives that:
Corollary. Let u be a solution of (1). If at some point x0 ∈ ∂{u > 0} ∩ D the

function u has a blow-up limit of the form u0(x) =
√

Λx+d , then ∂{u > 0} is C1,α

manifold in a neighborhood of x0.

The proof of the De Silva’s theorem can be divided into two main steps.
Step 1. The first step is to prove the non-rescaled version of the theorem:
Lemma (De Silva [4]). In the hypotheses of the above theorem, if

√
Λ (xd +A)+ ≤ u(x) ≤

√
Λ (xd +B)+ for every x ∈ B1

for some 0 < B−A < ε0, then there are a, b such that 0 < b−a < 1
2 (B−A) and

√
Λ (xd + a)+ ≤ u(x) ≤

√
Λ (xd + b)+ for every x ∈ Bρ.

Notice that this statement can be summarized in the following claim:

If u is ε-close to a solution of the form
√

Λ
(
(x− x0) · ν

)
+

in B1, then(3)

u is ε/2-close to a solution of the form
√

Λ
(
(x− y0) · ν

)
+

in Bρ

(the point y0 might be different from x0 but the direction ν remains the same).

Proof. If u, calculated in some fixed point (say x̄ = 1/5ed), is bigger that x+d
√

Λ
calculated in the same point, then the lower bound on u can be improved in Bρ.
In fact, in [4] it was constructed an increasing family of functions wt such that

∆wt > 0, |∇wt| >
√

Λ, wt = u on ∂B1, and wt ≤ u at x̄,

for every 0 < t < 1. Since none of wt can touch u from below, we get that w1 ≤ u.
This provides the improvement in Bρ. �

Step 2. Let ρ be fixed. Suppose by contradiction that such an ε0 does not exist.
Then, there is a sequence un of εn-flat solutions which are not flatter in B1. But
then, Step 1, gives that the sequence

vn(x) =
un(x)−

√
Λx+d

εn
3



converges in some suitable sense to a function v. One can prove (see [4]) that the
limit v is a solution to some limit problem. In the one-phase case v is harmonic
in {xd > 0} with Neumann boundary condition on {xd = 0}. Now the classical
regularity of the harmonic functions gives that, for a dimensional constant Cd > 0,

x · ∇v(0)− Cdρ2 ≤ v(x) ≤ x · ∇v(0) + Cdρ
2 in Bρ.

Using the convergence of vn to v, we get that un is flatter in the direction of the
vector ed + εn∇v(0). This is a contradiction.

2. Two-phase free boundaries - the main result

Given a domain D in Rd, a (sign-changing) function ϕ : ∂D → R and constants
Λ+ > 0 and Λ− > 0, we consider the following two-phase Bernoulli problem:

Minimize

∫
D

|∇u|2 dx+ Λ+|{u > 0} ∩D|+ Λ−|{u < 0} ∩D|(4)

among all functions u ∈ H1(D) such that u = ϕ on ∂D.

This problem was introduced by Alt, Caffarelli and Friedman in [2]. The Lipschitz
continuity of the solutions was also proved in [2]. A Weiss-type monotonicity
formula can be obtained exactly as for the one-phase problem [7] and, as in the one-
phase case, it implies that all the blow-up limits are one-homogeneous functions.
Finally, reasoning as in Section 1.5, we get that if x0 is a two-phase point

x0 ∈ ∂{u > 0} ∩ ∂{u < 0} ∩D,
then every blow-up limit of u at x0 is of the form

(5) u0(x) = α(x · ν)+ − β(x · ν)−,

where ν is a unit vector (that might depend on the blow-up sequence) and α, β
are positive constants (one can show that α and β depend only on x0 and not on
the blow-up sequence) such that

α2 ≥ Λ+, β2 ≥ Λ−, α2 − β2 = Λ+ − Λ−.

One can express this as an optimality condition in viscosity sense, precisely as in
the one-phase case (see [3]).

In [3], with De Philippis and Spolaor, we proved the following theorem about
the regularity of the free boundary around two-phase points.

Theorem (De Philippis-Spolaor-V. [3]). Let u be a solution of (4). Then, in a
neighborhood of every two-phase point x0 ∈ ∂{u > 0} ∩ ∂{u < 0} ∩ D, both free
boundaries ∂{u > 0} and ∂{u < 0} are C1,α manifolds (in any dimension d ≥ 2).

Remark 1. The same regularity result holds for viscosity solutions, which are ε
close to a solution of the form (5), precisely as in the De Silva’s Theorem.

Remark 2. In dimension two, this theorem was proved in our earlier paper [5]
via an epiperimetric inequality.

The proof of the above theorem follows the main steps from the proof of the De
Silva’s Theorem, but there are two main differences. The first one is technical and
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comes from the fact that the limit problem from Step 2 is a thin two-membrane
problem, but this does not require a change in the general approach to the problem.
The second difference is hidden in Step 1. In fact the statement (3) turns out to
be false in the two-phase case. Even in dimension one. For instance, for every
ε > 0, the function

uε(t) =
√

Λ+(t+ ε)+ −
√

Λ−(t− ε)−
is a solution to the two-phase problem and is ε-close, in the interval (−1, 1), to
the 1-homogeneous global solution

√
Λ+t+ −

√
Λ−t−.

but this closeness cannot be improved in the smaller interval (−ρ, ρ).
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